If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6w^2+4w-3=0
a = 6; b = 4; c = -3;
Δ = b2-4ac
Δ = 42-4·6·(-3)
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{88}=\sqrt{4*22}=\sqrt{4}*\sqrt{22}=2\sqrt{22}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{22}}{2*6}=\frac{-4-2\sqrt{22}}{12} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{22}}{2*6}=\frac{-4+2\sqrt{22}}{12} $
| 2x+14=2x-14=124 | | 21x+35=6x-12+15 | | 6(0.5=y(.25) | | 1/2n-6=6 | | 7(4x+5)=6(×-2)+15 | | 4^5x-2=20 | | (s-6)2=75 | | -3(1/5x-2)=1/9(27-3x) | | 9x-14=5×+6 | | x+3x/4-5x/6=22 | | 1x*4=10 | | -14(1-x)-2x=46 | | y-17-8y=18 | | 2a-8+5=20 | | -6(y+9)=4y-4 | | 3/2=b=7/4 | | -5(x-1)=17 | | 5/12-3/12=a | | -12=4(x=5) | | 15x+12(7-10)=141 | | d^2+d+1=0 | | -16=-4/7y | | 3(x+-2)+4=-1+3(1-x) | | x+90+x+15+x=180 | | 8m-7=79 | | 10x+84=114 | | 5x-7+4x+x=180 | | 58x/7=29 | | 11x-50=115 | | -12*(x-1)+5*(3x-1)-8=2*(2-x)+9x | | (10+y)-(.55y)=200 | | 15=1+3y |